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Abstract
Complementary recommendations, which aim at
providing users product suggestions that are sup-
plementary and compatible with their obtained
items, have become a hot topic in both academia
and industry in recent years. Existing work mainly
focused on modeling the co-purchased relations be-
tween two items, but the compositional associa-
tions of item collections are largely unexplored.
Actually, when a user chooses the complementary
items for the purchased products, it is intuitive that
she will consider the visual semantic coherence
(such as color collocations, texture compatibilities)
in addition to global impressions. Towards this end,
in this paper, we propose a novel Content Attentive
Neural Network (CANN) to model the comprehen-
sive compositional coherence on both global con-
tents and semantic contents. Specifically, we first
propose a Global Coherence Learning (GCL) mod-
ule based on multi-heads attention to model the
global compositional coherence. Then, we gener-
ate the semantic-focal representations from differ-
ent semantic regions and design a Focal Coherence
Learning (FCL) module to learn the focal composi-
tional coherence from different semantic-focal rep-
resentations. Finally, we optimize the CANN in a
novel compositional optimization strategy. Exten-
sive experiments on the large-scale real-world data
clearly demonstrate the effectiveness of CANN
compared with several state-of-the-art methods.

1 Introduction
Recommender systems are those techniques that support
users in the various decision-making process and catch their
interest among the overloaded information. For enhanc-
ing user satisfaction and recommendation performances, it is
an indispensable part to understand how products relate to
each other in recommender systems [McAuley et al., 2015a;
Li et al., 2018]. Along this line, complementary recommen-
dations [Yu et al., 2019], which aim at exploring item com-
patible associations to enhance the qualities of each item or
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Figure 1: Illustration of complementary recommendations. (a) Rec-
ommendations based on co-purchased relations. (b) Recommenda-
tions based on compatible relations. (c) Recommendations based on
compositional coherence.

another, have become a hot topic in both academia and indus-
try in recent years.

In the literature, previous researches can be clustered into
two groups, i.e., unsupervised methods [Tan et al., 2004;
Zheng et al., 2009] and supervised models [Zhao et al., 2017;
He et al., 2016]. For a long time, researchers mainly used
unsupervised methods to model the association rules in the
recommendation process [Tan et al., 2004]. Meanwhile,
some studies proposed supervised approaches to learn com-
plementary relationships, such as co-purchased [Zhao et al.,
2017] and content compatibility [He et al., 2016]. Recently,
many researchers attempted to mine the compatibility of fash-
ion items to better understand the complementary relation-
ships in the clothing recommendations [Han et al., 2017;
Hsiao and Grauman, 2018]. In spite of the importance of ex-
isting studies, the exploration of compositional associations
in the complementary item recommendations is still limited.

As a matter of fact, when a user chooses the complemen-
tary items for the purchased products, it is intuitive that she
will consider the visual coherence (such as color collocations,
texture compatibilities) in addition to global impressions. For
example, Figure 1 shows the case of a complementary rec-
ommendation process. If we only consider co-purchased re-
lations, we may recommend a creamy-white shirt to the user
as shown in Figure 1(a). That is because the shirt was co-
purchased respectively with three query items by other users.
When we take consideration of the compatible relations as
shown in Figure 1(b), we can find the missing component
of the user’s purchased collection is a pair of shoes. Then,
a pair of black booties may be a suitable recommendation.
However, for considering compositional relationships and vi-
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sual semantic, we can find the mini skirt and shoulder bag
are in blue. Therefore, as Figure 1(c) shows, a pair of blue
leather pumps is the best-matching. From this example, we
can conclude that a good complementary recommender sys-
tem should model the comprehensive compositional relation-
ships on both global contents and semantic contents. Unfor-
tunately, the exploration of this compositional coherence in
the complementary recommendations is still limited.

In this paper, we provide a focused study of the compo-
sitional coherence in item visual contents from two perspec-
tives, i.e., the global visual coherence and the semantic-focal
coherence. Along this line, we propose a novel Content At-
tentive Neural network (CANN) to address the complemen-
tary recommendations. More specifically, we first propose a
Global Coherence Learning (GCL) module based on multi-
heads attention to model the global compositional coherence.
Then, considering the importance of visual semantics (such as
color, texture), we generate the content semantic-focal repre-
sentations of color-focal, texture-focal and hybrid-focal con-
tents, respectively. Next, we design a Focal Coherence Learn-
ing (FCL) module based on a hierarchical attention model to
learn the focal coherence from different semantic-focal rep-
resentations. Finally, we optimize the CANN in a novel com-
positional optimization strategy. We conduct extensive ex-
periments on a real-world dataset and the experimental re-
sults clearly demonstrate the effectiveness of CANN com-
pared with several state-of-the-art methods.

2 Related Works

2.1 Visual Recommendations

With the rapid development of deep learning [Zhao et al.,
2019; Wu et al., 2019] and computer vision, visual recom-
mendations have raised lots of interests in both academia
and industry and benefited lots of applications, such as im-
age recommendations [McAuley et al., 2015b], movie rec-
ommendations [Zhao et al., 2016] and fashion recommen-
dations [Han et al., 2017; Hou et al., 2019]. Some previ-
ous works treated visual recommendations as special content-
aware recommendations incorporating the visual appearance
of the items [He and McAuley, 2016]. Along this line, many
researchers directly extracted the visual feature by a pre-
trained CNN model and enhanced traditional recommender
systems, such as Matrix Factorization [He and McAuley,
2016; Hou et al., 2019]. For example, [He and McAuley,
2016] proposed a recommendation framework to incorporate
the visual signal of the items. Recently, many researchers
utilized deep learning methods to generate item recommen-
dations [Kang et al., 2017]. To further explore item visual
contents, some studies developed deep neural networks to ex-
tract the aesthetic information of images [Liu et al., 2017;
Yu et al., 2018]. Although various researches have leveraged
visual features in recommendation tasks, they usually treated
item visual features as side information and the item visual re-
lations have been largely unexploited. In this paper, we pro-
pose the compositional visual coherence, which is learning
by the attention-based deep neural networks, to deeply model
the item complementary relation for recommender systems.

2.2 Complementary Recommendations
For enhancing the recommendations, explicitly modeling
the complex relations among items under domain-specific
applications is an indispensable part [Liu et al., 2018].
Along this line, many researchers focused on exploring the
item combination-effect relations, such as substitutable rela-
tions [McAuley et al., 2015a; McAuley et al., 2015b] and
complementary relations [Rudolph et al., 2016; Yu et al.,
2019]. For a long time, many researchers mainly utilized un-
supervised learning methods to explore co-occurrence rela-
tions for complementary recommendations [Tan et al., 2004;
Zheng et al., 2009]. Recently, more and more studies based
on supervised approaches were proposed to model comple-
mentary relationships, which were mainly reflected by users’
purchases of the complements [Zhao et al., 2017; He et al.,
2016] or item content similarities [McAuley et al., 2015a;
Zhang et al., 2018]. Along this line, since natural com-
plementary relationships in the fashion items [Chang et al.,
2017; Lo et al., 2019], there was a particular interest in un-
derstanding the compatibility [Song et al., 2017; Wang et
al., 2019] of fashion items to generate complementary rec-
ommendations [Han et al., 2017; Hsiao and Grauman, 2018;
Vasileva et al., 2018]. For example, [He et al., 2016]
learned the complicated and heterogeneous relationships be-
tween items and enhance fashion recommendations. [Han et
al., 2017] developed Bi-LSTMs to model the outfit comple-
tion process and generate the complementary clothing rec-
ommendations. Although these works have considered co-
reactions between items, the item compositional coherence
in the global and semantic contents cannot be depicted and
captured well. In this paper, we propose a focal study on ex-
ploring the item compositional relationship of visual content
to enhance the complementary item recommendations.

3 CANN: Content Attentive Neural Network
In this section, we introduce our proposed framework for ad-
dressing the complementary recommendations.

In the real complementary item choosing process, people
always want to buy some items that can be compatible with
their purchased products. Suppose we have a set of compat-
ible item collections S = {O1, O2, ..., ON}, and for each
collection Oi = {p1, p2, .., pk} contains k compatible items
p. Meanwhile, we have a scenario that a user has purchased a
seed collection of items P = {p1, p2, ..., pi}, but she is con-
fused to choose complementary items P ∗ which can make the
item collection compatible. To that end, in this paper, we aim
to give a complementary suggestion for the target user to help
her make the best-matched choice.

Along this line, we propose a content-based attention
model, i.e., Content Attentive Neural network (CANN), to
address the complementation recommendations. As shown
in Figure 2, CANN consists of a Global Coherence Learning
(GCL) component and a Focal Coherence Learning (FCL)
component to jointly learn the compositional relationships
from global and semantic-focal contents. In order to simulate
users’ decision-making process on complementary items, we
propose a novel compositional optimization strategy to train
our proposed CANN.
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Figure 2: Illustration of Content Attentive Neural network (CANN), which integrates two main components, i.e., A. Global Coherence
Learning (GCL) and B. Focal Coherence Learning (FCL).

3.1 Global Coherence Learning
Considering the differences from traditional recommenda-
tions, the visual contents of items are an important part of
the complementary recommendations e.g., the colors should
be compatible and styles should be matching. Along this
line, we propose an attention-based module, i.e., Global Co-
herence Learning (GCL) to learn compositional coherence of
item global visual contents.

We develop the Inception-V3 CNN model [Szegedy et al.,
2016] as the feature extractor to transform item global visual
contents (item images) to original feature vectors. Then for
each item collection P = {p1, p2, ..., pk}, we can generate
the items visual representations P = {x1, x2, ..., xk} from
the item images, where xi is the feature representation de-
rived from the CNN model for the i-th item. We adopt a
fully connected layer for all xi to reduce the feature dimen-
sion and make the visual content representation fine-tuned in
the model training stage. More formally, we generate the final
visual representation as following:

xfi = σ(xiW
(1)
f + b

(1)
f )W

(2)
f + b

(2)
f , (1)

where the weight matrices W (1)
f , W (2)

f are of shape Rdc×dc ,

Rdc×df , respectively. And b(1)f , b(2)f are the bias terms, σ is
the activation function, here, we use ReLU function.

After obtaining the visual representations of the item col-
lection P̂ = {xf1 , x

f
2 , ..., x

f
k}, we can generate the item em-

bedding matrix M ∈ Rk×df , where k is the maximum length
of the item collections and df is the latent dimension of item
visual feature. If the item collection length is shorter than
k, we repeatedly use a ‘padding’ item until the length is k.
Next, an attention mechanism is applied to model the item
compositional coherence in multiple visual spaces. Inspired

by the multi-heads attention method [Vaswani et al., 2017],
in this paper, we use a stacked attention model to capture the
global visual coherence. More specifically, we transform the
item visual features into various visual spaces and perform a
linear projection as xsi = xiWs + bs, where xsi is the repre-
sentation vector of i-th item in s-th visual space, Ws is the
projection matrix of shape Rdf×ds , and bs is the bias term.
Then we can model the global coherence between two items
in the target collection as:

αs
i,j =

W q
s x

s
i · (W k

s x
s
j)

T

√
ds

, α̂s
i,j =

exp(αs
i,j)∑k

j=1 exp(α
s
i,j)

, (2)

where αs
i,j is the visual coherence score of item pi and pj ,

weight matrices W q
s , W k

s are of shape Rds×ds . Here, we
use
√
ds to constrain the values of αs

i,j . Next, the coherence
scores are normalized by a softmax function. Then we can
generate the item representation vsi incorporating the global
coherence of other items in the s-th visual space as:

vsi =

k∑
j=1

α̂s
i,j ⊗ xsj , (3)

where the ⊗ represents the element-wise product. For each
visual space, we can generate each item representation in-
cluding the compositional information. Then, we can fuse
all the visual space to generate the global item visual repre-
sentations, i.e., vi = Concate(v1i , v

2
i , ..., v

s
i ). Therefore, we

model global coherence from multiple visual spaces within an
attention-based block and item visual representation Ma =
[v1, v2, ..., vk] is generated. Then, the global coherence learn-
ing process can be defined as Ma = fa(P ). However, the
global coherence learning process is a linear operation and the



interactions between different latent dimensions are largely
unexploited. With this in mind, we develop a feedforward
network to endow the model with the nonlinear operation:

fn(M) = σ(MaW
(1)
n + b(1)n )W (2)

n + b(2)n , (4)

where the weight matrices W (1)
n , W (2)

n are of shape Rdf×df

and b(1)n , b(2)n are the bias terms. After that, we generated the
attention output from a multi-heads attention block. For mod-
eling the sophisticated compositional coherence of global fea-
tures, we stack multiple multi-heads attention blocks to build
a deeper network architecture. In order to prevent overfitting
and unstable training process, we perform the Batch Normal-
ization (BN) layer [Ioffe and Szegedy, 2015] after the output
of each attention block. More formally, the output of b−th
block can be defined as:

M (b)
a = fa(h

b−1)⊕ hb−1, (5)

h(b) = BN(Wbnfn(M
(b)
a )) + bbn), (6)

where ⊕ is the element plus, fa, fn are the attention function
and feedforward function, respectively. After the final atten-
tion block, we can generate global representations of the seed
collection G (P ) = h(b

∗), where h(b
∗) is the output of the last

multi-heads attention block.

3.2 Focal Coherence Learning
As mentioned above, for learning the compositional coher-
ence from the item content, the content semantic attributes are
also important to understanding item characteristics. To that
end, we propose a novel Focal Coherence Learning (FCL)
to model the compositional coherence from semantic-focal
contents, i.e., color-focal contents, texture-focal contents and
hybrid-focal contents. Firstly, we develop a Semantic-Focal
Content Extraction (SFCE) based on the region-based seg-
mentation methods as regions can yield much richer visual
information than pixels [Uijlings et al., 2013]. Inspired by
Selective Search [Uijlings et al., 2013], we firstly use a group-
ing algorithm to merge the semantic regions, which are based
on the color or textual similarity computing. Specifically,
we first generate the initial semantic regions by a segmenta-
tion algorithm [Felzenszwalb and Huttenlocher, 2004]. Then
we develop the Selective Search algorithm to group regions
which are similar in color, texture and both of them, respec-
tively. The similarity can be measured as Sim(ri, rj) =∑n

k=1min(C
k
i , C

k
j ), where the Ci is the measurement of

characteristic feature histogram, i.e., the color histogram and
texture histogram, n is the feature dimensionality. More
specifically, for each region, we extract three-dimensional
color histograms. Each color channel is discretized into 25
bins, and n = 75 for the color feature in total. And we ob-
tain n = 240 dimensional texture histogram by computed
SIFT-like [Liu et al., 2010] measurements on 8 different ori-
entations of each color channel, for each orientation for each
color using 10 bins. Both color histogram and texture his-
togram are normalized by L1 norm.

After computing the semantic similarity of regions i and k,
we can group the similar regions and the target histogram Ct

can be efficiently propagated by:

Ct =
size(ri) · Ci + size(rj) · Cj

size(ri) + size(rj)
. (7)

The size of target regions can be simply computed
size(rt) = size(ri) + size(rj). Different from the Selec-
tive Search [Uijlings et al., 2013], we do not combine the
color and texture similarity. Because we want to deeply ex-
plore the compositional coherence of different semantic con-
tents. CANN extracts the semantic-focal contents Rc, Rt, Rh

respectively based on color similarity, texture similarity and
hybrid similarity, and for each semantic-focal content we
choose three content regions. With a pre-trained Inception
V3 [Szegedy et al., 2016], we can generate the feature vec-
tors F = [yc, yt, yh] of all the semantic-focal contents. Next,
we can learn the focal coherence among the content regions.

Actually, considering the computational complexity of the
attention mechanism for all the regions in all the items,
similar with [Ma et al., 2019], we propose a hierarchical
attention module to model both the semantic-specific and
cross-semantic dependency in a distinguishable way. As
shown in Figure 2, the input semantic-focal features V ∈
Rk×|F |×|R|×dy can be reshaped as input matrices VC ∈
R|F |×dC in the semantic-specific space and VS ∈ Rk×dS

in the cross-semantic space. For each seed item collection,
k is the seed item numbers, |F | is the number of semantic-
focal features, |R| is the number of content regions of each
semantic-focal feature, and dy is the dimension of each re-
gion representation. Afterwards, we can compute our focal
coherence by hierarchical multi-heads attention as:

V ′ = AV = ÂCVS = ÂCÂSV, (8)

where ÂC and ÂS are attention matrices of semantic-specific
and cross-semantic. Similar to GBL, the attention matrices
are computed by Eq.2. More specifically, we firstly model
the compositional coherence of different semantic-focal re-
gions. Then, we learn the attention map of different items.
For aligning the attention matrices to the semantic-focal fea-
tures, we reshape the attention matrices as ÂC = AC ·IC and
ÂS = AS · IS , where IC , IS are the identity matrices. To
that end, the semantic-focal representation of the item seed
collection P can be formulated as F (V ) = V ′.

3.3 Optimization Strategy
So far, from GCL and FCL modules, we can generate the
global and semantic-focal representations, respectively. Next,
after a fully connected layer, we can obtain representations of
the prediction items. Following [Han et al., 2017], we append
a softmax layer on the x̂ to calculate the probability of com-
plementary items conditioned on the target seed collections:

Pr(x̂|P ) = exp(x̂ · xc)∑
xc∈N exp(x̂ · xc)

, (9)

where N contains all the items from the seed collections.
This can make model learn compositional coherence by
means of considering a diverse collection of candidates. For
optimizing our CANN, we propose a compositional training



Algorithm 1 Compositional Optimization Strategy
Input: Initialization model f(Pi, C; θ); The length of the seed col-
lection k; The complementary item database S; The number of
epochs T ; The size of batch m
Parameter: Model parameter θ
1: for i = 1, 2, 3, ..., T do
2: Random sample m seed collections O ∈ S
3: Initial input mini-batch Input as ∅
4: for Oi in Batch do
5: Random choose an item p from the collection Oi

6: Generate the seed collection Pi ←Mask(Oi, p)
7: if |Pi| < k then
8: Add an padding to the left of Pi until |Pi| = k
9: end if

10: Generate the input mini-batch Input← Input ∪ Pi

11: end for
12: Build the training candidates N ← ∀x ∈ Input
13: Update the model θ ← SGD(f(Input, C; θ), θ)
14: end for

strategy to simulate users’ decision-making process on com-
plementary items as Algorithm 1. In the training stage, we
use the Mask(Oi, p) operation to delete prediction items p
from the seed collections O. Moreover, we take all items in
the mini-batch as the candidate collection N . But in the in-
ference stage, we conduct the candidate collection as the xc.
Actually, for some small datasets, we can use all the items
as the candidates, but this is not practical for large datasets
because of the high dimensional item representations.

With the compositional optimization strategy, CANN can
be trained end-to-end. During training, we minimize the fol-
lowing objective function:

L(P,N ; θ) = − 1

|N |

|N |∑
t=1

logPr(x̂|P ), (10)

where θ denotes the model parameters. Similar with [Han et
al., 2017], we add a visual-semantic embedding as a regular-
ization. We use Stochastic Gradient Decent (SGD) [Robbins
and Monro, 1951] with mini-batch to update them through
Algorithm 1.

4 Experiments
In this section, we first introduce the experimental settings
and compared methods. Then, we compare the performance
of CANN against the compared approaches on the comple-
mentary recommendation task. Then, we make an ablation
study on the focal coherence learning process. At last, we
conduct a case study to visualize the compositional coherence
of our proposed CANN.

4.1 Experimental Setups
Dataset. We evaluate our proposed method on a real-world
dataset, i.e., Polyvore dataset [Han et al., 2017; Vasileva et
al., 2018]. It provides the fashion outfits, which are created
and uploaded by experienced fashion designers. Indeed, out-
fit matching is a natural scenario for the content-based com-
plementary recommendations, because the clothes in an out-
fit are complementary to each other. We use the provided

datasets [Han et al., 2017; Vasileva et al., 2018], which con-
tain 90,634 outfits. For the reliability of experimental results,
we make the necessary specific processing as follows. First,
we merge the datasets and remove the noise samples that ex-
clude the seed sets of more than 8 items. It is because a
fashion outfit hardly contains more than 8 items in real-world
scenarios. Then, we split the dataset into 59,212 outfits with
221,711 fashion items for training, 3,000 outfits for valida-
tion and 10,218 outfits for testing. Next, we conduct a testing
set (i.e., FITB Random) as fill-in-the-blank tasks [Han et al.,
2017], which we randomly choose candidates as the negative
samples from the whole testing set. Meanwhile, in order to
further make our testing more difficult and similar to users’
decision-making process, we conduct a more specific testing
set, i.e., FITB Category. In this set, we remove the easily
identifiable negative samples and replace these samples with
other items which have the same category of the ground-truth.

Evaluation Metrics. We evaluate our model and all com-
pared methods by two evaluation metrics, i.e., the Accuracy
(ACC) [Han et al., 2017; Vasileva et al., 2018] and Mean Re-
ciprocal Rank (MRR) [Song et al., 2017; Jin et al., 2019].

Implementation Details. We adopt the GoogleNet Incep-
tionV3 model [Szegedy et al., 2016] which was pretrained on
ImageNet [Deng et al., 2009] to transform global visual con-
tents (images) and semantic-focal visual contents (regions) to
feature vectors. For fair comparisons, we set all the image
embedding size of df = 512 unless otherwise noted. The
number of visual space is set to S = 4 and for each visual
space, we set ds = df/S = 128 and b∗ = 4 unless otherwise
noted. Our model is trained with an initial learning rate of
0.2 and is decayed by a factor of 2 every 2 epochs. The batch
size is set to 9, seed collection length k is set to 8. We stop the
training process when the loss on the validation set stabilizes.
Our model and all the compared methods are developed and
trained on a Linux server with two 2.20 GHz Intel Xeon E5-
2650 v4 CPUs and four TITAN Xp GPUs. The datasets and
source codes are available in our project pages 1.

4.2 Compared Approaches
To demonstrate the effectiveness of CANN, we compare it
with the following alternative methods:

• SetRNN [Li et al., 2017]. This method treats the outfit data
as a set and develops RNN model to generate the comple-
mentary scores of target item sets.

• SiameseNet [Veit et al., 2015]. This model utilizes a
Siamese CNN to project two items into a latent space to
estimate their similarity. We use an L2 norm to normalize
the item visual embedding before calculating the Siamese
loss and set the margin parameter to 0.8.

• VSE [Han et al., 2017]. Visual-Semantic Embedding
(VSE) method learns a multimodal item embedding based
on images and texts. The resulting embeddings are used to
measure the item recommendation scores.

• Bi-LSTM [Han et al., 2017]. This method builds a bidi-
rectional LSTM to predict the complementary item condi-

1https://data.bdaa.pro/BDAA Fashion/index.html



tioned on previously seen items in both directions. We use
the full model by jointly learning the multimodal inputs.

• CSN-Best [Vasileva et al., 2018]. This method learns a vi-
sual content embedding that respects item type, and jointly
learns notions of item similarity and compatibility in an
end-to-end model. We use the full components with a gen-
eral embedding size of 512 dimensions in our experiments.

• NGNN [Cui et al., 2019]. This method learns item comple-
mentary relations by the node-wise graph neural networks.
This is the state-of-the-art method in fashion compatibility
learning and clothing complementary recommendations.

Besides, for verifying the effectiveness of components, we
construct three variant implements based on CANN.

• CANN-G. This is a variant of our model that only uses
the Global Coherence Learning (GCL) module to generate
complementary recommendations.

• CANN-F. This is a specific implementation that only uses
Focal Coherence Learning (FCL) module.

• CANN. This is the model with all proposed components.

4.3 Recommendation Performances
We compare CANN with the other methods on the content-
based complementary recommendations. The number of can-
didates is set to 4 for both FITB Random and FITB Category,
which is the same as previous work [Han et al., 2017;
Vasileva et al., 2018; Cui et al., 2019].

The results of all methods on both testing sets are shown in
Table 1. we can make the following observations: 1) CANN
outperforms all the compared methods in both datasets, which
indicates the superiority of the proposed model for content-
based complementary recommendations. 2) SetRNN and
VSE perform the worst on both datasets. That indicates the
complementary method is not a trivial problem which can be
handled straightly by simple methods. 3) SiameseNet and
CSN-Best are similar methods which model the item pair-
wise compatibility. These models work better than SetRNN
and VSE model, but worse than Bi-LSTM and CANN. This
may be due to the fact that SiameseNet and CSN-Best aim
to learn the similarity between two fashion items but ig-
nore the compositional process. 4) CANN-F performs worse
than CANN-G, that because CANN-F only considers the
semantic-focal contents, which may make some information
ignored. Moreover, CANN-G outperforms other methods ex-
cept for CANN. That enables us to safely draw the conclusion
that it is advisable to model the compositional coherence of
items on both global and semantic-focal contents.

4.4 Ablation Study on Focal Coherence
To further assess the robustness of the model and necessity of
the semantic-focal coherence, we set different semantic con-
tents in FCL module and evaluate the performances as the
number of candidate collections increases. We set the FCL
module with only color-focal, texture-focal and hybrid-focal
contents and compare these models with all our proposed
model CANN which contains all the semantic-focal contents.

The results are shown in the Figure 3, where the horizon-
tal axis indicates the number of candidate collections. The

Table 1: Performance comparisons of CANN with alternative meth-
ods on two specific testing sets.

Approaches
FITB Random FITB Category

Accuracy MRR Accuracy MRR
SetRNN 29.6% 48.1% 28.7% 46.1%

SiameseNet 52.2% 71.6% 54.0% 72.8%
VSE 29.2% 49.1% 30.2% 53.2%

Bi-LSTM 83.6% 91.1% 58.2% 75.7%
CSN-Best 58.9% 76.1% 56.1% 74.2%

NGNN 87.3% 93.2% 57.3% 74.9%
CANN-G 88.8% 94.1% 62.4% 78.1%
CANN-F 71.9% 84.1% 56.7% 74.7%
CANN 90.7% 95.1% 66.5% 80.9%

Color, Texture, Hybrid and ALL represent that CANN uses
only color-focal, texture-focal, hybrid-focal and all contents,
respectively. From the Figure 3, we can get the following
observations: 1) CANN with all the semantic-focal contents
has outperformed others, which clearly demonstrate the ef-
fectiveness of all components in our proposed CANN. 2) The
CANN with hybrid-focal coherence learning performs bet-
ter than color-focal and texture-focal methods. Meanwhile,
the color-focal model outperforms the texture-focal model.
These observations imply that the color is an important fac-
tor for content-based complementary item recommendations.
3) CANN with all semantic-focal contents outperforms other
single semantic-focal models on FITB Category with a larger
margin than on FITB Random. These observations imply that
semantic-focal contents can help the model to better under-
stand the item compositional relationships and generate the
best-matched complementary item suggestions.

4.5 Visualization of the Attention Mechanism
To further illustrate the learning and expression of composi-
tional visual coherence in our model, we visualize the inter-
mediate results of the coherence score α̂i,j in Eq. 2. Figure 4
illustrates the item compositional relations in an example. For
the better visualization, we select one semantic region gener-
ated by our model for each semantic-focal content. The color
in Figure 4 changes from light to dark while the value of co-
herence score increases.

From Figure 4, it is worth noting that the coherence scores
between the t-shirt and shorts are higher than others in all co-
herence spaces. Meanwhile, the scores between shoes and
bracelet are also quite high. That is intuitive that the black
t-shirt and dark blue shorts are similar in color. The shoes
and bracelet are similar in leopard print style. These observa-
tions imply that our proposed CANN can provide a good way
to capture the visual coherence for the complementary items
from both global and semantic-focal views.

5 Conclusion
In this paper, we proposed a novel framework, the Content
Attentive Neural Network (CANN), to address the problem of
content-based complementary recommendations. For gener-
ating complementary item recommendations, the global and
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Figure 3: Results of complementary recommendations over different candidate numbers.

(a)Global Coherence (b)Color Coherence
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Figure 4: Visualization of the compositional coherence scores be-
tween two items in both of the global and semantic-focal contents.

semantic contents (such as color collocations, texture com-
patibilities) are indispensable parts to understand the com-
prehensive compositional relationship among items. Along
this line, we provided a focused study on the compositional
coherence in item visual contents. More specifically, we first
proposed a Global Coherence Learning (GCL) module based
on multi-heads attention to model the global compositional
coherence. Then, we generated the content semantic-focal
representations and designed a hierarchical attention mod-
ule, i.e., Focal Coherence Learning (FCL), to learn the focal
coherence from different semantic-focal contents. Next, for
simulating users’ decision-making process on complemen-
tary items, we optimized the CANN in a novel compositional
optimization strategy. Finally, we conducted extensive exper-
iments on a real-world dataset and the experimental results
clearly demonstrated the effectiveness of CANN compared
with several state-of-the-art methods.

In the future, we would like to consider multi-modal infor-
mation, such as item descriptions and categories for the deep
exploration of the item complementary relationships. More-
over, we are also willing to investigate the domain knowledge
about aesthetics assessment and make the recommender sys-
tems more explainable.
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